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(1980) for the same crystal and radiation were used to 
derive the relative magnitudes of the extinction cor- 
rections for the two sets of data. The reasonableness of 
using the same extinction tensor can be understood 
from the fact that the crystal had not been removed 
from its support between the two experiments; conse- 
quently the directions of the normals to the planes of 
diffraction for corresponding reflections remained 
unchanged. To obviate the need for making TDS 
corrections, the peak widths of the monochromator 
data were adjusted to be identical to their equivalents in 
the filtered data with peak maxima in identical positions 
relative to the peak widths. It was felt prudent not to 
include the {111} reflections in the determination of K 
since the absorption edge of the fl filter fell beneath their 
peaks. No reflections were rejected on the basis of the 
difference between extinction corrections [maximum 
value ofypc was 0.0007 corresponding to Yext = 0. 8885 
(monochromator) and 0.8891 (filter) for the 220 
reflectionl. The value of K determined under these 
conditions was 0.805 (11). 

In summary, our experimentally derived K for Cu 
Ka radiation falls between the expected values for an 
ideally mosaic and perfect graphite monochromator. In 
contrast, the values we have obtained for Mo Ka and 
Ag Ka radiation fall outside this range. Moreover, and 
contrary to the results of Jennings (1968) and Le Page, 
Gabe & Calvert (1979), they are smaller than those 
expected for an ideally mosaic crystal. 
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Abstract Introduction 

The minimum-variance weighting scheme for calculat- 
ing the weighted mean of a quantity for the following 
unusual case is analysed. The quantity is derived from 
the product of two independent quantities for each of 
which a set of data is available. All the products 
between the two sets of data are taken into con- 
sideration. The application to measurements of the 
polarization state of X-radiation is outlined. 
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In a previous paper (Vincent & Flack, 1980), a method 
is described for determining the polarization ratio, K, of 
X-radiation reflected from a monochromator. This 
value is estimated by taking the weighted mean of M × 
N individual values Ku, i.e. 

I~= Z" Z a o K  au, (1) 
i= l j  j=l 

where a U is the weight attributed to Kij. 
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The K o are obtained from the relationship Analysis 

K O = c 0 A i Bj + d O, (2) Let us write 

where c o and d o are known constants and A~, (i = 1, 2, 
. . . ,  M) and B j, ( j  = 1, 2 , . . . ,  N)  are independent series 
of data (with e.s.d.'s) derived from intensity measure- 
ments. The subject of this paper is the choice of the 
'proper' or 'best' weighting scheme, a o, to apply in the 
above-defined problem. 

A simple choice for the weighting scheme would be 
to use 

ai j= 1/0.~ s, 

where e~s could be estimated from 

y o = A , B j ( i =  1 , 2 , . . . , M ; j =  1, 2, . . ., N), (3) 

and K for the population mean of the desired quantity. 
In the following analysis it will be necessary to have 
multiple summations over the observations. As a 
matter of convention, i, k and m take values from 1 to 
M, and j ,  l and n take values from 1 to N. It is 
convenient also to choose weights a o so that 

Z Z aij = 1. (4) 
i j 

0..2. = 2 2 ,j Bj 0.~ + A~ 0.), 

w h e r e  0 .2 represents the population variance of the 
subscripted quantity (Hamilton, 1964). From a 
theoretical point of view this weighting scheme is 
unsatisfactory as it treats the M × N values of Kgj, 
derived from M + N values of A i and B j, as 
independent observations whereas the error distur- 
bances in the K~j must be correlated. 

From a practical point of view this simple weighting 
scheme was tested in a simulation with model data of A~ 
and Bj derived from a chosen value of K and with a 
Gaussian pseudo-random error added in. The value of 
/(  was frequently unreasonably different from the 
model value of K. The discrepancy between R and the 
model K increased with decreasing wavelength. 

We were thus driven to determine a more satisfac- 
tory weighting scheme. The criterion to be applied 
(Hamilton, 1964) is that /~ should be an unbiased 
estimator of K and that its variance should be 
a minimum. The steps in the analysis, given below, to 
determine the a o are as follows. The error disturbances 
on the A g and Bj, and the expected values of their first- 
second-, third- and fourth-order moments are defined. 
It is then shown that, for any weighting scheme, R is an 
unbiased estimator of K. Next, the variance of g is 
determined and this value is minimized with respect to 
the a 6. An expression for the weighting scheme in 
terms of the population variances of the A~ and Bj is 
thus obtained. We next suppose that estimates of these 
population variances are available but that these are 
only known within a scale factor. It is shown that the 
variance of R is proportional to this (as yet unknown) 
scale factor. It may, however, be estimated by 
considering the expected value of the weighted squared 
deviations of the K o about /~. Finally, a practical 
method for calculating the weighting scheme in a 
computer program is presented. As much of the algebra 
is straightforward, only the important intermediate 
equations are given in the text. 

Definition o f  errors 

Let us assume that our A i, Bj of (2) are subject to 
random errors. We may write 

A i = E i + e  i and B j = F j + f j ,  (5) 

where E i and Fj are the population means and e i andfj  
represent the random errors on these quantities. Taking 
expected values, e{A i} = E i and e{Bj} = Fj, we assume 
that 

e / e i } = e { f j } = 0 ;  i = l , . . . , M ,  j = l  . . . .  ,N. (6a) 

Further, we will assume that the individual error terms 
have a finite variance 

e{ei z} = 0.Z(Ei) and c{f~} = 0.2(Fj) (66) 

and that the error disturbances are independent one 
from another, i.e. 

e{eif  j } = 0 ,  e{e ie  k } = 0 f o r i 4 = k ,  

e { f j f t } = O f o r j # : l ,  
2 2 e{ei f ~ } =  0.2(Ei)0.2(Fj), 

e I e i f  j ekf  t } = 0 for i 4= k o r j  4= l, 

c{e i f  j e k } = 0 and g I e i f j f  t } = O. (6e) 

The expected value o f  K 

Substituting (5) into (2) and the result into (1), with 
(4), we obtain 

R = K +  X ~  a o c i j l E i f j +  Fsei + eifsl .  
i j 

(7) 

Taking expected values and applying (6) it follows that 
c{/(} = K. i.e. g is an unbiased estimator of K. 
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The variance o f  R 

Squaring (7) we obtain 

on the right-hand side of (14) through the uj and v i in 
(13). 

M N M N 

( I ( - - K )  2 :  ~ ~ ~ ~ a i j a k t c i j c t d [ E i E k f j f t  
i = l j = l k = l l = l  

+ Fj F l e i ek + et ek f J t  + 2El Ftf~ ek 

+ 2 F j e i e k f  t + 2et ekZf/]. (8) 

Taking expected values in (8) and applying (6), one 
finds 

e{(K K)2} E Z 2 z E oE(F fl - -  = a i j c i j [ E  i 
i j 

+ vj  a2(E) + GZ(Ey(Fj)] 

+ ~ ~ a u a ~ c i j c ~ E i E k ~ 2 ( F j )  
i j k 

l~j 
+ ~. ~ ~. a i j a i i c i j C i l F j F l t 7 2 ( E i ) ,  (9) 

t j l 

which is an expression for the variance of/~. 

Minim&ing the variance o f  I( 

Let us now minimize a{(/( -- K) 2} subject to the 
restriction (4) that ~t ~i atJ = 1. This may be achieved 
by differentiation of (9) including a Lagrangian 
multiplier. Set 

Q = e { ( I ( - K ) 2 }  + 2(~i ~ (10) 

and the conditions OQ/Oaij = 0 produce 

ai j=- - l~ i j [~ ,  + c i j u j E i ~ 7 2 ( F j )  + c i j v i F j ~ 7 2 ( E i ) ] ,  (11) 

where 

flu= 1/cZu[E~ oZ(F) + F~ aZ(E3 + 2crZ(Ei)crZ(F)],(12) 

uj = ~ a~ c# E k and v i = ~. art c u F t. (13) 
k l 

A, in (11) may be eliminated by imposing (4). One 
obtains 

Use o f  sample variances o f  A t and B i 

The weighting scheme defined by (14) requires 
values of e2(Ei) and eZ(Fj) to be known. We will now 
suppose that we have experimental values of these 
quantities available sZ(Ei), sZ(Ffl but that they are only 
known to within an unknown scale factor, i.e. 

u 2 ( E t )  = f l$2(Ei)  and o2(Fj) = f l s2(Fj) .  (16) 

In order to estimate fl, it is useful to substitute (16) into 
(12)--(15), omit all terms in s 4 and of higher order and 
replace a e by a proportional quantity w e. We obtain 

= = 2 2sE(Fj) F 2sE(Ei)], (17) Xij ~l~ij l / c i j [ E i  + 

w~i = xij I1 + ~o -- cij[u j E i s2 (F j )  

~. wki c~ E k ~ Wil ell F t 
k i 

uj=  and v t= , (19) 
E E w. EE 
i l k j  

~o= ~ ~ ci jxelujEisZ(Ffl  + viFjsZ(Ei)l,  (20) 
i j 

i j 

and 

variance (K) = e { ( K -  K) 2 } 

= f l [ l + q g - - ~  w Z u / X ~ x u ] / ~ i  ~ w u .  (22) 
• • X o I 

The above relationships are readily derived when it is 
realized that 

Z Z xti = Z Z wii" (23) 
i j t j 

% flu{(1 + ~u) Z 

-- cij[ltj Ei a2( F)) + vi Fj •2( Ei)] }, (14) 

where 

~o= ~Xc~j l l i j tu jEicr2(Ff l+ vtFjo2(Ei)]. (15) 
i j 

Thus, (14) defines the weighting scheme that we need 
although it is in an implicit form as the aij also appear 

Estimation of  fl 

Consider ~i ~j  wij(Kij - / ( - )2 and its expected value. 
From (7), (2) and (5) one finds that 

Kkl -- R = Ckl E k f  I + Ckt Fl ek 

i j t j 

- ~ ~, w~jci~Fiei/~ ~ w~i. (24) 
/ j J 
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Taking expected values in (24) one finds 

1 

-b Zi Ej (W2/Xij)/~i ~j. Xij], (25) 

which allows the value of fl to be estimated by 
assuming that ~a, ~.t Wkl(Kkl -- I()  2 has attained its 
expected value. 

Evaluat ion  o f  w o 

The equations (18) for w o represent a M N  x M N  
system of linear equations in M N  unknowns. Rather 
than solve directly such a system by matrix inversion, 
we have preferred an iterative procedure which progres- 
sively improves the weights in a series of cycles. Sup- 
pose we have an 'old' system of weights wo o and that a 
'new' better system is required by adding in a shift A w  o, 
i.e. 

wno = wo o + A w  o. (26) 

wno will be made to obey (18) approximately, keeping 
in mind that (23) needs to hold, i.e. 

E E wnij = E E woo = E E xij 
i j 

or 

Z Y A w o =  O. (27) 

are correct. This approximation leads to 

A'wij{2 -- cijxij[uj s2(Fj)Ei + v~ sZ(E~F;I} 

= --woi + xij + xo q~o -- co xij[u°j sZ(Fj)Ei 

+ v°is2(Ei)FslZ Z xl, t' 
k l 

where 

(29) 

c~i xki Ek ~ Oil Xil Ft 
k 1 U~= , V~= 
Y Y xk, Y Y xk, 
k l k l 

The second term in the braces { } on the left-hand side of 
(29) is small in comparison to 2 and may be neglected. 
It is also desirable to damp the shift A ' w  o by a factor 
fi in a practical application. Hence we obtain 

/ t 

wnij: (1--6/2)woij~[-6/2txij~l-~-~o 
-cij[u°js2(Fj)Ei-~v°i''s2(E')FJ]EEk l Xklll "(30) 

A suitable starting set of weights are the xij. In 
principle, it is the (unknown) population means Ei and 
Fj of the observations which enter into (30). In practice 
it is adequate to use the observed values A i and Bj in 
place of E t and Fj. 

uo i, voj and un i, vnj are the values defined by (19) with 
the 'old' and 'new' system of weights respectively. 
Likewise, CPo and On are defined from (20). Substituting 
(26) into (I 8) to make wnij obey (18) exactly one finds, 

Awij = --woiy + Xiy -t- xij (~o 

"F Xij E i ¢klXkl[S2(f l)Ek(~m AWml CmlEm) 

+ s2(Ek)fl(~n AWknCknfn)]/~kZXkli 

-- cijxo[uo j E i s2(Fj) + vo i Fj s2(Ei)] ~ ~ Xkt 
k l 

--CijXij[Eis2(Fj)( m AWmjCmjEm ) 
(28) 

To simplify (28) we make a diagonal approximation of 
the M N  x M N  matrix defining Awij by taking only 
constants and terms in A w  o. This is tantamount to 
assuming that all weights other than one individual w o 

Application to polarization measurements 

Details of the measurements and the technique are 
given in Vincent & Flack (1980). Intensity measure- 
ments are available from the same crystal for both 
monochromated and filtered radiation. These intensity 
measurements are divided into two sets, which are 
mutually exclusive, based on values of 0. We may write 

A i = [(1 + cos 2 20/)/2] I i (monochroma tor ) / I  i (filter), 

i =  1, 2 , . . . , M ,  (31) 

B j =  [2/(1 + cos z 20j)] Ij (filter)/Ij (monochromator), 

j =  1 , 2 , . . . , N ,  

where I is the intensity measurement for a particular 
reflection under the stated conditions. From (3), Yij = 
A i B  j, the polarization state of the radiation may be 
written as 

Ko = ( c°s2 2Oi - Yo c°s2 2Oj)/(Yo - 1). (32) 

To apply the weighting scheme described above it is 
necessary to linearize (32). This is achieved by 
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expanding (32) to first order in a Taylor series about 
some 'guessed' value of K, Kg. One obtains the 
following values to be used in (2). 

(COS 2 20j + Kg) 2 

ciJ = cos 2 2 0 j -  cos 2 20~' 

(cos z 20 i + Kg)(COS 2 20j + Kg) 
d u = K g -  (33) 

cos / 2 0 j -  cos 2 20~ 

The weighting scheme was implemented in a Fortran 
program. The weights were refined in cycles according 
to (30) until the maximum relative shift was less than a 
specified quantity (a value of 0.5 % was chosen). It was 
found that 6 had to be small (0.03) to avoid divergence. 
A considerable number of cycles (~650) were neces- 
sary in order for the weights to converge but the 
calculation nevertheless is extremely rapid on a modern 
computer. We have not attempted to improve the rate 
of convergence. The value of Ke initially chosen was for 

a kinematical monochromator and the whole calcu- 
lation was rerun with Kg equal t o / (  obtained from the 
first run. The value o f / (  determined is highly insensitive 
to the value of Kg. 

Some simulations were carried out to test the method 
and the program. These were based on the data used 
in paper II of this series but with intensities calculated 
from a model value of K, and with a pseudo-random 
Gaussian error added in to match the counting 
statistics of the experiment. From these simulations it is 
clear that the weighting scheme produces values of 3? 
closer to K than the simple weighting scheme of x U and 
that the e.s.d, of/~ is also reduced. 
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Abstract 

By embedding the three-phase structure seminvariant T 
and its three symmetry-related variants in suitable 
quintets Q (five-phase structure invariants) one obtains 
the extensions Q of T to which T is related via the 
space-group symmetries. The neighborhoods of T are 
then defined in terms of the neighborhoods of its 
extensions. The conditional probability distribution of 
T, given the seven magnitudes I EI in its first 
neighborhood, is derived. The distribution yields a 
reliable estimate (0 or n) for T in the favorable case that 
the variance of the distribution happens to be small. 

1. Introduction 

In recent years the basic concepts and mathematical 
formalism needed for the development of the prob- 
abilistic theory of the structure seminvariants have been 
elucidated. For example, it has long been known that, 
for fixed enantiomorph, the collection of observed 
magnitudes IEI determines, in general, the values of all 
the structure seminvariants. A major recent advance is 

0567-7394/80/040624-09501.00 

the neighborhood principle: For fixed enantiomorph, 
the value of any structure seminvariant T is primarily 
determined, in favorable cases, by the values of one or 
more small sets of magnitudes I EI, the neighborhoods 
of T, and is relatively insensitive to the values of the 
great bulk of remaining magnitudes (Hauptman, 1975). 
The conditional probability distribution of T, given the 
magnitudes in any of its neighborhoods, yields an 
estimate for T which is particularly good in the 
favorable case that the variance of the distribution 
happens to be small. With the identification of systems 
of neighborhoods for the structure invariants, the 
probabilistic theory of the structure invariants 
developed rapidly, especially in space groups P1 and 
P1, but a great deal of work still remains to be done in 
deriving accurate and readily computable probability 
distributions, particularly for the space-group-special 
structure invariants. 

Again, with the formulation of the extension concept 
[Hauptman (1977b, 1978); but see Giacovazzo (1977) 
for the equivalent concept called representation theoryl, 
the probabilistic theory of the structure seminvariants 
was reduced to that of the structure invariants, which 
is more highly developed. In particular, the 
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